Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 6: 784, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29487738

RESUMO

One commonly performed bioinformatics task is to infer functional regulation of transcription factors by observing differential expression under a knockout, and integrating DNA binding information of that transcription factor.   However, until now, this this task has required dedicated bioinformatics support to perform the necessary data integration. GenomeSpace provides a protocol, or "recipe", and a user interface with inter-operating software tools to identifying protein occupancies along the genome from a ChIP-seq experiment and associated differentially regulated genes from an RNA-Seq experiment. By integrating RNA-Seq and ChIP-seq analyses, a user is easily able to associate differing expression phenotypes with changing epigenetic landscapes.

2.
Nat Methods ; 13(3): 245-247, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780094

RESUMO

Complex biomedical analyses require the use of multiple software tools in concert and remain challenging for much of the biomedical research community. We introduce GenomeSpace (http://www.genomespace.org), a cloud-based, cooperative community resource that currently supports the streamlined interaction of 20 bioinformatics tools and data resources. To facilitate integrative analysis by non-programmers, it offers a growing set of 'recipes', short workflows to guide investigators through high-utility analysis tasks.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma Humano/genética , Software , Mineração de Dados , Humanos , Internet , Integração de Sistemas
3.
J Virol ; 89(19): 9865-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202234

RESUMO

UNLABELLED: Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. IMPORTANCE: Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells circulating in the blood of infected primates respond following exposure to Marburg virus. Our results show that there are three discernible stages of response to infection that correlate with presymptomatic, early, and late symptomatic stages of infection, a response format similar to that seen following challenge with other hemorrhagic fever viruses. In contrast to the ability of the virus to block innate immune signaling in vitro, the earliest and most sustained response is an interferon-like response. Our analysis also identifies a number of cytokines that are transcriptionally upregulated during late stages of infection and suggest that there is a Th2-skewed response to infection. When correlated with companion data describing the animal model from which our samples were collected, our results suggest that the innate immune response may contribute to overall pathogenesis.


Assuntos
Biomarcadores/metabolismo , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/fisiopatologia , Marburgvirus/imunologia , Animais , Citocinas/imunologia , Perfilação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Macaca mulatta , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real
4.
PLoS Negl Trop Dis ; 8(7): e3061, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25079789

RESUMO

Ebola virus (EBOV) infection in humans and non-human primates (NHPs) is highly lethal, and there is limited understanding of the mechanisms associated with pathogenesis and survival. Here, we describe a transcriptomic analysis of NHPs that survived lethal EBOV infection, compared to NHPs that did not survive. It has been previously demonstrated that anticoagulant therapeutics increase the survival rate in EBOV-infected NHPs, and that the characteristic transcriptional profile of immune response changes in anticoagulant-treated NHPs. In order to identify transcriptional signatures that correlate with survival following EBOV infection, we compared the mRNA expression profile in peripheral blood mononuclear cells from EBOV-infected NHPs that received anticoagulant treatment, to those that did not receive treatment. We identified a small set of 20 genes that are highly confident predictors and can accurately distinguish between surviving and non-surviving animals. In addition, we identified a larger predictive signature of 238 genes that correlated with disease outcome and treatment; this latter signature was associated with a variety of host responses, such as the inflammatory response, T cell death, and inhibition of viral replication. Notably, among survival-associated genes were subsets of genes that are transcriptionally regulated by (1) CCAAT/enhancer-binding protein alpha, (2) tumor protein 53, and (3) megakaryoblastic leukemia 1 and myocardin-like protein 2. These pathways merit further investigation as potential transcriptional signatures of host immune response to EBOV infection.


Assuntos
Anticoagulantes/uso terapêutico , Ebolavirus/patogenicidade , Perfilação da Expressão Gênica , Doença pelo Vírus Ebola/patologia , Interações Hospedeiro-Patógeno , Animais , Modelos Animais de Doenças , Doença pelo Vírus Ebola/imunologia , Leucócitos Mononucleares/imunologia , Macaca mulatta , Análise em Microsséries , Resultado do Tratamento
5.
PLoS Pathog ; 9(12): e1003778, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339775

RESUMO

A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/genética , Domínios e Motivos de Interação entre Proteínas/genética , Mapas de Interação de Proteínas , Transcriptoma , Viroses/genética , Sítios de Ligação , Sequência Conservada , Pleiotropia Genética , Especificidade de Hospedeiro/genética , Humanos , Mimetismo Molecular/genética , Ligação Proteica/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Viroses/virologia
6.
PLoS Negl Trop Dis ; 7(4): e2171, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638192

RESUMO

Lassa virus (LASV) is a significant human pathogen that is endemic to several countries in West Africa. Infection with LASV leads to the development of hemorrhagic fever in a significant number of cases, and it is estimated that thousands die each year from the disease. Little is known about the complex immune mechanisms governing the response to LASV or the genetic determinants of susceptibility and resistance to infection. In the study presented here, we have used a whole-genome, microarray-based approach to determine the temporal host response in the peripheral blood mononuclear cells (PBMCs) of non-human primates (NHP) following aerosol exposure to LASV. Sequential sampling over the entire disease course showed that there are strong transcriptional changes of the immune response to LASV exposure, including the early induction of interferon-responsive genes and Toll-like receptor signaling pathways. However, this increase in early innate responses was coupled with a lack of pro-inflammatory cytokine response in LASV exposed NHPs. There was a distinct lack of cytokines such as IL1ß and IL23α, while immunosuppressive cytokines such as IL27 and IL6 were upregulated. Comparison of IRF/STAT1-stimulated gene expression with the viral load in LASV exposed NHPs suggests that mRNA expression significantly precedes viremia, and thus might be used for early diagnostics of the disease. Our results provide a transcriptomic survey of the circulating immune response to hemorrhagic LASV exposure and provide a foundation for biomarker identification to allow clinical diagnosis of LASV infection through analysis of the host response.


Assuntos
Perfilação da Expressão Gênica/métodos , Febre Lassa/genética , Vírus Lassa/imunologia , Leucócitos Mononucleares/metabolismo , Macaca/imunologia , Macaca/virologia , Animais , Feminino , Imunidade Inata/imunologia , Febre Lassa/virologia , Vírus Lassa/patogenicidade , Masculino , Receptores Toll-Like/metabolismo
7.
Front Microbiol ; 3: 428, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23267356

RESUMO

General principles governing biomolecular interactions between species are expected to differ significantly from known principles governing the interactions within species, yet these principles remain poorly understood at the systems level. A key reason for this knowledge gap is the lack of a detailed three-dimensional (3D), atomistic view of biomolecular interaction networks between species. Recent progress in structural biology, systems biology, and computational biology has enabled accurate and large-scale construction of 3D structural models of nodes and edges for protein-protein interaction networks within and between species. The resulting within- and between-species structural interaction networks have provided new biophysical, functional, and evolutionary insights into species interactions and infectious disease. Here, we review the nascent field of between-species structural systems biology, focusing on interactions between host and pathogens such as viruses.

8.
BMC Genomics ; 12: 585, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22126435

RESUMO

BACKGROUND: Motivated by the precarious state of the world's coral reefs, there is currently a keen interest in coral transcriptomics. By identifying changes in coral gene expression that are triggered by particular environmental stressors, we can begin to characterize coral stress responses at the molecular level, which should lead to the development of more powerful diagnostic tools for evaluating the health of corals in the field. Furthermore, the identification of genetic variants that are more or less resilient in the face of particular stressors will help us to develop more reliable prognoses for particular coral populations. Toward this end, we performed deep mRNA sequencing of the cauliflower coral, Pocillopora damicornis, a geographically widespread Indo-Pacific species that exhibits a great diversity of colony forms and is able to thrive in habitats subject to a wide range of human impacts. Importantly, P. damicornis is particularly amenable to laboratory culture. We collected specimens from three geographically isolated Hawaiian populations subjected to qualitatively different levels of human impact. We isolated RNA from colony fragments ("nubbins") exposed to four environmental stressors (heat, desiccation, peroxide, and hypo-saline conditions) or control conditions. The RNA was pooled and sequenced using the 454 platform. DESCRIPTION: Both the raw reads (n=1, 116, 551) and the assembled contigs (n=70, 786; mean length=836 nucleotides) were deposited in a new publicly available relational database called PocilloporaBase http://www.PocilloporaBase.org. Using BLASTX, 47.2% of the contigs were found to match a sequence in the NCBI database at an E-value threshold of ≤.001; 93.6% of those contigs with matches in the NCBI database appear to be of metazoan origin and 2.3% bacterial origin, while most of the remaining 4.1% match to other eukaryotes, including algae and amoebae. CONCLUSIONS: P. damicornis now joins the handful of coral species for which extensive transcriptomic data are publicly available. Through PocilloporaBase http://www.PocilloporaBase.org, one can obtain assembled contigs and raw reads and query the data according to a wide assortment of attributes including taxonomic origin, PFAM motif, KEGG pathway, and GO annotation.


Assuntos
Antozoários/genética , Bases de Dados Genéticas , Transcriptoma , Animais , Antozoários/classificação , Filogenia
9.
J Infect Dis ; 204 Suppl 3: S1043-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21987740

RESUMO

The mechanisms of Ebola (EBOV) pathogenesis are only partially understood, but the dysregulation of normal host immune responses (including destruction of lymphocytes, increases in circulating cytokine levels, and development of coagulation abnormalities) is thought to play a major role. Accumulating evidence suggests that much of the observed pathology is not the direct result of virus-induced structural damage but rather is due to the release of soluble immune mediators from EBOV-infected cells. It is therefore essential to understand how the candidate therapeutic may be interrupting the disease process and/or targeting the infectious agent. To identify genetic signatures that are correlates of protection, we used a DNA microarray-based approach to compare the host genome-wide responses of EBOV-infected nonhuman primates (NHPs) responding to candidate therapeutics. We observed that, although the overall circulating immune response was similar in the presence and absence of coagulation inhibitors, surviving NHPs clustered together. Noticeable differences in coagulation-associated genes appeared to correlate with survival, which revealed a subset of distinctly differentially expressed genes, including chemokine ligand 8 (CCL8/MCP-2), that may provide possible targets for early-stage diagnostics or future therapeutics. These analyses will assist us in understanding the pathogenic mechanisms of EBOV infection and in identifying improved therapeutic strategies.


Assuntos
Ebolavirus/imunologia , Predisposição Genética para Doença , Genoma , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/terapia , Transcrição Gênica , Animais , Coagulação Sanguínea/genética , Inibidores dos Fatores de Coagulação Sanguínea/genética , Inibidores dos Fatores de Coagulação Sanguínea/metabolismo , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Doença pelo Vírus Ebola/genética , Ativação Linfocitária/genética , Macaca mulatta , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...